
1© Mannarino Systems & Software Inc. 2023 – All Rights Reserved, Private and Confidential

ulticore processors have been the 
subject of much interest in safety-
critical domains. The increased 
performance and parallel execution 

brought by the multiple cores open new horizons in 
terms of size, weight and power efficiency. 
However, this parallel execution results in 
contention on shared SoC (System on Chip) 
resources. This phenomenon, called interference, 
prevents the precise execution time analysis of 
applications. In this paper, we present solutions to 
control, reduce and bound interferences using M-
RTOS, an ARINC-653 multicore-capable RTOS.

1 Introduction
The transition from single core to multicore SoC 
presents multiple advantages in the embedded world. 
Their increased power efficiency and the size and
performance ratio make them perfect candidates for 
more computationally intensive applications. Such 
processors embed multiple cores capable of executing 
different threads at the same time. Resources present 
on the SoC such as the caches, memory, bus or 
interconnect are shared between the cores.

Figure 1 presents a generic multicore architecture. 
Each core has its own private cache and shares a global 
shared cache. The cores access the same memory bus 
and their requests are scheduled by a bus arbiter. 
Finally, the memory and peripherals can be accessed 
by all cores.

All shared components manage concurrent accesses 
made by cores and ensure the transactions integrity. 
This allows easy communications between the 
different applications running in the system.

Figure 1: Multicore architecture with shared caches.

2 Resource Contention and 
Interferences

Shared caches contain recently accessed data (and 
instructions) to provide faster servicing times. 
However, due to their limited capacity, loading data in 
caches may entail the eviction of previously stored 
data. This means that a core, by loading new data in 
the cache, can evict data previously loaded by other 
cores. Later during the execution, if the evicted data 
are requested by a core, they need to be reloaded, 
which introduce execution time delays, referenced as 
interference.

The DRAM (Dynamic Random Access Memory) 
exhibits a similar mechanism. To increase 
performance, it is divided into banks. Each bank, 
composed of rows, has a private cache called row 
buffer. When a core accesses a row, it is loaded in the 
row buffer, which allows a core accessing contiguous 
data to be serviced faster from the row buffer. But if 
another core accesses a different row in the same bank, 
the row buffer is populated with the newly accessed 

M

Resource Isolation in Multicore
Safety-Critical Systems



Resource Isolation in Multicore Safety-Critical Systems

2© Mannarino Systems & Software Inc. 2023 – All Rights Reserved, Private and Confidential

row. When cores access the same bank but different 
rows, the buffer is swapped multiple times. This 
phenomenon increases the execution time compared to 
a case where only one core accesses the same row.

Most buses and interconnects can only service one 
transaction at a time. When multiple transactions are 
initiated from different cores, they are serialized to 
ensure the exclusive use of the bus. This serialization 
can be managed by multiple policies (priority based, 
First-In First-Out, etc.). Each core freezes until its 
transaction is serviced. The time during which a core 
is frozen depends on the contention on the bus and 
introduces interference.

Interrupts are used to react to system events such as 
timers, peripherals update, etc. When triggered, an 
interrupt is handled by the RTOS (Real-Time 
Operating System) code through an interrupt service 
routine. This execution path is independent of the 
applications' flow and can generate interferences. An 
excessive or unbounded number of interrupts impacts 
the execution time and predictability of applications. 
Interrupt interferences can be found in single-core 
systems but are increased due to the contention of 
multicore processors.

To acknowledge interferences and their impact in 
safety-critical systems, the CAST-32A (Certification 
Authorities Software Team, 2016) positional paper 
from the Certification Authorities Software Team and 
the more recent AMC-20-193 (European Aviation 

Safety Agency, 2022) document from the European 
Union Aviation Safety Agency were published. They 
provide guidelines and reminders on the management 
of interference. Although no mitigation means or 
implementation detail is provided, these documents 
pave the way for the transition to multicore 
architectures.

The technical solutions presented in this paper are part 
of a global solution to help the user meet the CAST-
32A / AMC-20-193 objectives once the final product 
is integrated. The approaches proposed in this paper 
guide the user towards meeting such objectives.

3 Memory Isolation
When isolating the memory components (shared 
caches and DRAM), memory coloring is a method of 
choice. This approach allows allocating specific 
regions of the cache and designated DRAM banks to 
each core. The CAST-20 (Certification Authorities 
Software Team, 2003) document preconizes to flush 
and invalidate the cache during each partition switch, 
meaning that all applications mapped to the same core 
can use the same shared cache regions without 
interfering between each other. Hence, cache partitions 
and DRAM banks are allocated on a per-core basis.

Memory coloring is achieved by carefully selecting 
addresses during the virtual-to-physical translation. 
Specific bits in the physical address designate in which 
region of the cache and which DRAM bank the data or 

Figure 2: Memory coloring scheme with 32 cache colors (5 
bits) and 15 banks (4 bits) overlapping.

Figure 3: Effect of cache partitioning on a four-core 
processor.



Resource Isolation in Multicore Safety-Critical Systems

3© Mannarino Systems & Software Inc. 2023 – All Rights Reserved, Private and Confidential

instruction is located. Using this concept, caches can 
be divided in different regions, called colors. Figure 2
gives an example of memory coloring. The page index 
allocation provides a contiguous virtual memory space 
to applications. However, the frame indices associated 
to the page indices during translation can be scattered 
through the memory. This allows selecting which 
index the memory manager assigns to the physical 
addresses allocated to a given core. By carefully 
choosing bits 12 to 16, the manager chooses which 
cache regions will be accessed. The same applies when 
choosing bits 15 to 18 for the DRAM banks.

Each color is allocated to a core, which means that 
applications executing on a given core can only be 
provided physical addresses located in specific cache 
colors and DRAM banks. This ensures that 
applications on a specific core cannot evict cache data 
loaded by applications on a different core. In the same 
manner, DRAM bank row buffers can only be updated 
by applications on the same core. Figure 3 depicts the 
effect of cache partitioning.

Data shared between applications on different cores 
can be assigned to any color shared among the cores. 
A particular attention shall be given to balancing the 
shared data colors to avoid color starvation (overusing 
one color for shared data while other colors are only 
used by private data).

The advantage memory coloring has compared to 
hardware cache partitioning is that it has a higher 
portability (it only requires the architecture to have 

memory translation mechanisms) and it allows 
combined DRAM bank coloring.

4 Bus Bandwidth Control
To ensure bus contention is bounded, it is important to 
limit the access rate made by cores to it. The bus has a 
maximal number of transactions for a given time slice. 
This number of accesses can be divided between the 
different cores to give an upper limit to the contention 
occurring during this time slice and ensure QoS 
(Quality of Service) among the cores. This number of 
accesses per time slice is called access budget and is 
replenished at the beginning of each time slice.

In a recent research article (Awan, Souto, Bletsas, 
Akesson, & Tovar, 2019), the authors show that 
allocating bus budget on a per-time-window basis 
instead of per-core basis provides better performance 
and allow integrating more partitions is the system. 
Using the memory manager proposed in (Torres 
Aurora Dugo, Lefoul, Harnois, Gohring de Magalhaes, 
& Nicolescu, 2022), M-RTOS is capable of controlling 
the bus access and throttle the transactions made by a 
partition when its budget is exceeded. Figure 4 shows 
a simple system with six partitions. When partition 2 
exceeds its budget, it is unscheduled until its budget is 
replenished. The same happens for partitions 3 and 5.

Upon budget depletion, the partition is unscheduled 
and a neutral process is scheduled. The neutral process 
does not generate any access to the bus. Using 
different memory configuration methods (e.g., cache 
partitioning, scratchpads, etc.) the neutral process can 

Figure 4: Bus budgeting mechanism throttling the CPU 
usage of partitions 2, 3 and 5.

Figure 5: Interrupt management system. Interrupt 10 is 
deferred twice during P2 window (P2 will be notified the 
next time it is scheduled) and canceled once during the 
second P1 window. The Health Monitor is notified that 
Interrupt 10 sets as NMI exceeded its limit during the first 
time window.



Resource Isolation in Multicore Safety-Critical Systems

4© Mannarino Systems & Software Inc. 2023 – All Rights Reserved, Private and Confidential

perform control tasks without accessing the bus. This 
improves the CPU utilization by performing 
background work without having to rely on an idle 
process that would simply halt the CPU.

Unscheduling the partitions ensures that other 
applications executing on different cores will be able 
to access the bus given their allocated budget. Figure 
6 shows the effect of bus budgeting on the application 
execution time an access pattern.

5 Managing Multicore 
Interrupts

Interrupt-generated interference analysis can become 
an impossible task when the number of interrupts in 
the system is not bounded. Not only the fact that the 
regular interrupt

management execution path will introduce contention 
on the shared components, but also interrupt storms 
that can make the system completely unusable. 
Interrupt storms are situations where one or multiple 
interrupts are triggered in an uncontrolled manner.

This phenomenon can occur because of an incorrectly 
configured or defective component, but also a miss-
behaving partition that generates system calls (usually 
triggered through interrupts) without limitation. By 
continuously servicing interrupts, not only the 
servicing core will not be able to execute applications, 
but it will also impact applications on other cores by 
contenting on shared resources.

In M-RTOS, two means are deployed to reduce and 
bound interrupt generated interferences. First, 
interrupts handlers’ instructions and data can be placed 
in private caches or scratchpads to reduce the 
contention generated by the interrupt handling 
mechanism. Using private caches removes contention 
on the lower memory levels and the bus while using 
scratchpads reduces the servicing time, hence reducing 
the time during which contention is possible on the 
shared components.

Secondly, an interference-aware interrupt manager 
was developed to control the interrupt servicing rate 
and prevent interrupt storms.

This novel interrupt manager enforces a limit to the 
number of times a specific interrupt can be serviced. 
Three classes of interrupts are configurable.

• Cancelable Interrupts (CAN): When 
reaching their servicing limit, cancelable 
interrupts will be discarded before being 
serviced. Depending on the hardware 
capabilities, cancelable interrupts will be 
disabled until their servicing limit is 
replenished.

• Deferrable Interrupts (DEF): Deferrable 
interrupts are not serviced after their 
servicing limit is reached. However, they are 
not disabled and each time a deferrable 
interrupt is triggered, M-RTOS registers it. 
When the deferrable interrupts see their 
budget replenished, the executing 
application is notified with the number of 

Figure 6: Effect of bus throttling on an application access pattern.



Resource Isolation in Multicore Safety-Critical Systems

5© Mannarino Systems & Software Inc. 2023 – All Rights Reserved, Private and Confidential

times the interrupt was deferred and can 
execute a configurable action.

• Non-Maskable Interrupts (NMI): This class 
of interrupts gathers critical interrupts. They 
can be given a servicing limit but will always 
be serviced. If the interrupt exceeds its 
servicing limit, M-RTOS will be notified 
based on the platform configuration.

The servicing limit is configured by the system 
integrator and is applied at the time-window scope. 
Meaning that each new time window, the interrupts 
servicing limits will be replenished with a new budget. 
Each interrupt can be configured to have a specific 
class and servicing limit per time window. Figure 5
illustrate the mechanism present in M-RTOS to control 
interrupt storms.

6 Using M-RTOS for 
Multicore Interference 
Mitigation

6.1 Safety Net
M-RTOS is a multicore-capable ARINC-653 
compliant RTOS. It provides interference mitigation 
mechanisms to ensure isolation between the SoC 
components. M-RTOS also embeds Safety Net
monitors to ensure the system's robustness and notify 
the user in case of unmitigated or unexpected 
interference. The Safety Net concept was introduced in 
the CAST-32A (Certification Authorities Software 
Team, 2016) document to mitigate unexpected 
breaches of isolation. M-RTOS integrates different 
monitors, first defined as formal constraints 
represented by mathematical equations. The 
constraints are implemented as monitors at key points 
of the RTOS such as the context switch, the page fault 
handler, etc. In the following equation, the number of 
interrupts handling for a given time window and a 
given interrupt index must be less than or equal to its 
defined budget. This constraint allows preventing 
interrupt storms.

∀𝑤𝑤𝑤𝑤, ∀𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴(𝑤𝑤𝑤𝑤), ∑ 𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶(𝑤𝑤𝑤𝑤, 𝑖𝑖𝑖𝑖)
𝑄𝑄𝑄𝑄𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑡𝑡𝑡𝑡=𝑄𝑄𝑄𝑄𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

6.2 Memory Partitioning
Using memory partitioning, M-RTOS is capable of 
bounding shared cache and DRAM interferences. By 
correctly isolating the shared memory components, the 
predictability of partitions running on four different 
cores is increased by 62.25% on average. Figure 7
presents the predictability increase for eight different 
applications running across the four cores. The 
predictability quantified by the standard deviation of 
the applications' execution time is depicted with 
respect to the applications' predictability when no 
memory isolation is used.

Applications exhibit different improvements 
depending on their memory and cache usage. When an 
application is prone to suffer from interferences, the 
gain obtained from partitioning the memory is greater 
than when an application is prone to generating 
interferences. Applications that profit from the cache 
will not see their data evicted from applications 
running on other cores.

Memory partitioning is completely transparent to 
applications in M-RTOS. The mechanism can be 
enabled and disabled and the allocation of the different 
cache and DRAM partitions to the cores is achieved in 
the system configuration. The number of available 
cache partitions and DRAM banks depends on the 
hardware specifications.

Figure 7: Predictability increase over eight applications 
using the M-RTOS memory partitioning feature.



Resource Isolation in Multicore Safety-Critical Systems

6© Mannarino Systems & Software Inc. 2023 – All Rights Reserved, Private and Confidential

6.3 Bus Bandwidth Limitation
Throttling memory bandwidth allows reducing and 
bounding contention on the bus. M-RTOS uses per-
partition bus budgeting to ensure QoS for all 
applications. Through the configuration, the user can 
set the maximal number of accesses (maximal budget) 
that the bus can handle during a given period of time 
called regulation period. Based on this upper bound, 
each application can be allocated a portion of bus 
access budget. While validating the configuration 
offline ensures that the sum of the budget of the co-
scheduled applications does not exceed the maximal 
budget, the Safety Net enforces that this constraint is 
respected at runtime.

Using bus budgeting alongside memory partitioning, 
the predictability of the system presented in Figure 8
was increased by 77.5% on average. To provide better 
best-effort performance and based on the work 
presented in (Yun, Yao, Pellizzoni, Caccamo, & Sha, 
2016), M-RTOS proposes to add a free shared budget 
pool that can be used by applications to reclaim budget 
when they exceeded theirs. Four different execution 
modes allow providing more configuration flexibility.
The budgets and execution modes can be set 
independently for each partition running on M-RTOS. 
Bus bandwidth limitation can be enabled or disabled 
through the configuration of the RTOS and the 
provided budget can be calculated using methods such 
as presented in (Torres Aurora Dugo, et al., 2022).

6.4 Interrupt Management
M-RTOS provides support to bound interrupt 
servicing. This mechanism sets a limit to the number 
of times an interrupt can be serviced. M-RTOS can be 
configured to provide a different limit for each 
interrupt occurring in the system. Furthermore, it 
implements the three interrupt classes presented in 
Section 5. Selecting the interrupt classes, interrupt 
limitations and the activation of the mechanism is 
achieved through the RTOS configuration. M-RTOS 
uses fast interrupt filters that do not generate 
interference. Thus, canceled, or deferred interrupts 
happening on one core cannot impact the execution 
time of applications executing on different cores.

Figure 9 shows the distribution of the execution times 
of an application running on M-RTOS. The number of 
interrupts being triggered on other cores is depicted on 
the horizontal axis while the execution time of the 
application is shown on the vertical axis. When 
interrupts are all serviced, interferences generated by 
the other cores handling the interrupts increase the 
application's execution time and reduce its 
predictability. However, when interrupts are set as 
deferrable (they are registered by M-RTOS but not 
serviced after they depleted their servicing limit), 
interference are removed, and the application is not 
impacted anymore.

Figure 8: Predictability increase over eight applications 
using the M-RTOS memory partitioning and bus bandwidth 
limitation features. Figure 9: Execution time distribution with limited interrupts 

(orange) and without limitation (green).



Resource Isolation in Multicore Safety-Critical Systems

7© Mannarino Systems & Software Inc. 2023 – All Rights Reserved, Private and Confidential

7 Conclusion
Multicore architectures are becoming more and more 
present in embedded systems. However, their use still 
presents challenges when it comes to safety-critical 
applications. The contention on the resources shared 
among the core introduces timing delays called 
interference. Those delays prevent the correct analysis 
of the applications' execution time and present a 
roadblock in the path to certification.

M-RTOS is an ARINC-653 compliant Real Time 
Operating System that proposes interference 
mitigation approaches to correctly isolate the shared 
memory hierarchy and ensure both Quality of Service 
and an improved timing predictability for applications. 
M-RTOS embeds run-time monitors that control the 
behavior of the complete system and prevent 
unexpected interference from impacting the 
applications' execution.

Through easy and intuitive configuration tools, M-
RTOS allows the mitigation of interferences while 
being totally transparent to the applications. This 
permits the seamless integration of the system.

8 Bibliography
Awan, M. A., Souto, P. F., Bletsas, K., Akesson, B., & 
Tovar, E. (2019). Memory access 
regulation,Multiframe task model. 2019 IEEE 25th 
International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA 
2019.

Certification Authorities Software Team. (2003). 
CAST-20, Addressing Cache in Airborne Systems and 
Equipment. USA.

Certification Authorities Software Team. (2016). 
CAST-32A Multicore Processors. USA.

European Aviation Safety Agency. (2022). General 
Acceptable Means of Compliance for Airworthiness 
of Products, Parts and Appliances AMC 20-193.
Europe.

Torres Aurora Dugo, A., Lefoul, J.-B., Ben-Salem, A., 
Harnois, S., Gohring de Magalhaes, F., & Nicolescu, 
G. (2022). Efficient Scheduling, Mapping and 
Memory Bandwidth Allocation for Safety-Critical 
Systems. 2022 20th IEEE Interregional NEWCAS 
Conference (NEWCAS). Quebec: IEEE.

Torres Aurora Dugo, A., Lefoul, J.-B., Harnois, S., 
Gohring de Magalhaes, F., & Nicolescu, G. (2022). 
Certifiable Memory Management System for Safety 
Critical Partitioned System. ERTS 2022 - 11th 
European Congress on Embedded Real Time 
Software and Systems. Toulouse.

Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., & 
Sha, L. (2016). Memory bandwidth management for 
efficient performance isolation in multi-core 
platforms. IEEE Transactions on Computers.



Mannarino Systems & Software Inc.
100 Boulevard Alexis-Nihon, Suite 800
St-Laurent, (Quebec) H4M 2P4, Canada
+1 (514) 381-1360
biz@mss.ca


